Archive for April 2016
Wireless | Influence of Gender on Muscle Activity
Muscle mechanical energy expenditure shows the neuromotor strategies used by the nervous system to analyze human locomotion tasks and is directly related to its efficiency. Kaur, Shilpi, Bhatia, and Joshi investigated the impact of gender on the activity of agonist-antagonist muscles during maximum knee and ankle contraction in males and females. Twenty right leg dominant male and female adult volunteers were recruited in the study. Limb dominance was determined according to which leg the individual chooses and relies on to carry out the activities. Movements of knee and ankle used for the maximum contractions were knee flexion and extension, and ankle plantar flexion and dorsiflexion. EMG Signals were recorded wirelessly from the selected ipsilateral and contralateral muscles of both the dominant and non-dominant lower limbs of all subjects. Recordings used BIOPAC multi-channel Wireless EMG and the collected data was stored using AcqKnowledge software included with the data recording system. Results showed that there is no significant influence of gender on agonist-antagonist muscle energy expenditure during maximum knee contraction. For ankle contractions, gender has significant influence on energy expenditure during maximum ankle dorsiflexion. Researchers found that these results are helpful in understanding gender related differences in the energy expenditure of selected muscles during maximum knee and ankle contractions. The wireless BioNomadix modules used by the researchers permitted free movement for the knee and ankle movements required of the study. The Dynamometry-EMG BioNomadix Pair has matched transmitter and receiver module specifically designed to measure one or both signals. These units interface with the MP150 and data acquisition and AcqKnowledge software, allowing advanced analysis for multiple applications and supporting acquisition of a broad range of signals and measurements. Both channels have extremely high-resolution EMG and Dynamometry waveforms at the receiver’s output. The pair emulates a “wired” connection from the computer to subject, in terms of quality, but with all the benefits of a fully-wireless recording system.