Archive for October 2017
Wireless | Personality Indicators for Flow State Susceptibility
Flow is described as almost complete immersion in a task or activity. Previous studies have identified that this intensive involvement leads to lower feelings of self consciousness, allowing concentration on a task to become effortless. Researchers Tain et al. (2017) sought to understand if there are precursors such as personality that would make individuals more susceptible to flow.
Video games were the chosen task for inducing participants’ state of flow. Computer moderated environments (CME’s) can provide clear goals and instant feedback important for eliciting flow. It’s also easy to manipulate CME’s difficulty, which was an important variable for the study. The researchers hypothesized higher reported levels of task difficulty and shyness would be identifiable precursors for an individual’s ability at attaining flow state.
Out of 350 potential participants who applied for the study, those who had the 20 highest and lowest scores for self-reported shyness were chosen. Once selected, these participants were then asked to play a 3D Tetris-like game. The participants had to play at three different intervals lasting six minutes, with each interval varying the speed in which the pieces fell for the purpose of manipulating difficulty. While on the computer, ECG signals of each participant were acquired through BIOPAC’s BioNomadix wireless respiration and ECG amplifier. Participants were asked to complete a questionnaire asking if they realized how much time had passed. Awareness of time passing allowed for measurement of the amount of flow participants were experiencing. ECG signals and self-reported information were then analyzed, comparing differences between the shy and non-shy groups.
Researchers found significant physiological differences between the two groups. The shy group was seen as having a high heart rate when in flow state, and high levels when completing moderate and difficult tasks. Despite physiological differences, researchers weren’t able to identify shyness as a precursor of flow state. When in flow, participants were found to have increased and deeper respiration, while heart rate and variability stayed moderate. Instead of resulting in an increased amount of mental effort, researchers were able to conclude that flow only required a moderate amount of effort but lead to an increased state of parasympathetic activity.
Being that challenge in the task was induced for the purpose of eliciting anxiety in participants, the authors recommended future experiments should asses the amount of skill the user has before the task is administered. The authors identified that more research should be done in this field examining how different mental and physiological measurements could be telling of flow state.
Video games were the chosen task for inducing participants’ state of flow. Computer moderated environments (CME’s) can provide clear goals and instant feedback important for eliciting flow. It’s also easy to manipulate CME’s difficulty, which was an important variable for the study. The researchers hypothesized higher reported levels of task difficulty and shyness would be identifiable precursors for an individual’s ability at attaining flow state.
Out of 350 potential participants who applied for the study, those who had the 20 highest and lowest scores for self-reported shyness were chosen. Once selected, these participants were then asked to play a 3D Tetris-like game. The participants had to play at three different intervals lasting six minutes, with each interval varying the speed in which the pieces fell for the purpose of manipulating difficulty. While on the computer, ECG signals of each participant were acquired through BIOPAC’s BioNomadix wireless respiration and ECG amplifier. Participants were asked to complete a questionnaire asking if they realized how much time had passed. Awareness of time passing allowed for measurement of the amount of flow participants were experiencing. ECG signals and self-reported information were then analyzed, comparing differences between the shy and non-shy groups.
Researchers found significant physiological differences between the two groups. The shy group was seen as having a high heart rate when in flow state, and high levels when completing moderate and difficult tasks. Despite physiological differences, researchers weren’t able to identify shyness as a precursor of flow state. When in flow, participants were found to have increased and deeper respiration, while heart rate and variability stayed moderate. Instead of resulting in an increased amount of mental effort, researchers were able to conclude that flow only required a moderate amount of effort but lead to an increased state of parasympathetic activity.
Being that challenge in the task was induced for the purpose of eliciting anxiety in participants, the authors recommended future experiments should asses the amount of skill the user has before the task is administered. The authors identified that more research should be done in this field examining how different mental and physiological measurements could be telling of flow state.