Showing posts with label BIONOMADIX. Show all posts

Wireless | Personality Indicators for Flow State Susceptibility

Flowing RiverFlow is described as almost complete immersion in a task or activity. Previous studies have identified that this intensive involvement leads to lower feelings of self consciousness, allowing concentration on a task to become effortless. Researchers Tain et al. (2017) sought to understand if there are precursors such as personality that would make individuals more susceptible to flow.

Video games were the chosen task for inducing participants’ state of flow. Computer moderated environments (CME’s) can provide clear goals and instant feedback important for eliciting flow. It’s also easy to manipulate CME’s difficulty, which was an important variable for the study. The researchers hypothesized higher reported levels of task difficulty and shyness would be identifiable precursors for an individual’s ability at attaining flow state.

Out of 350 potential participants who applied for the study, those who had the 20 highest and lowest scores for self-reported shyness were chosen. Once selected, these participants were then asked to play a 3D Tetris-like game. The participants had to play at three different intervals lasting six minutes, with each interval varying the speed in which the pieces fell for the purpose of manipulating difficulty. While on the computer, ECG signals of each participant were acquired through BIOPAC’s BioNomadix wireless respiration and ECG amplifier. Participants were asked to complete a questionnaire asking if they realized how much time had passed. Awareness of time passing allowed for measurement of the amount of flow participants were experiencing. ECG signals and self-reported information were then analyzed, comparing differences between the shy and non-shy groups.

Researchers found significant physiological differences between the two groups. The shy group was seen as having a high heart rate when in flow state, and high levels when completing moderate and difficult tasks. Despite physiological differences, researchers weren’t able to identify shyness as a precursor of flow state. When in flow, participants were found to have increased and deeper respiration, while heart rate and variability stayed moderate. Instead of resulting in an increased amount of mental effort, researchers were able to conclude that flow only required a moderate amount of effort but lead to an increased state of parasympathetic activity.

Being that challenge in the task was induced for the purpose of eliciting anxiety in participants, the authors recommended future experiments should asses the amount of skill the user has before the task is administered. The authors identified that more research should be done in this field examining how different mental and physiological measurements could be telling of flow state.

Facial EMG for Advertising Research

Targeting facial expressions for advertising research.Facial electromyography (FEMG) was compared to the more commonly used EMG in an experimental context to indentify if there is a more accurate approach that can be taken by neurological researchers in the field of advertising. Authors Lajante et al. identified that there are short comings when utilizing EMG to provide insight on the emotional reactions of individuals to advertising content and that other methodological approaches could be beneficial. FEMG represents a closer analysis on subtle facial movements, through which there is the potential of signaling positive and negative emotions in very subtle facial motions or changes. Comfortably seated in a laboratory setting, participants were fitted with electrodes and warned not to make unnecessary movements. EMG and FEMG were then concurrently monitored while advertisements by eight distinct brands were displayed on a flat screen TV in front of them. After being exposed to the advertisements, participants completed a 9-point self-assessment survey. BIOPAC’s wearable BioNomadix 2ch EMG transmitter was utilized for the purpose of collecting the FEMG signals. These signals were measured through observing specific, responsive muscle movements. Upward movements at the corners of the mouth indicated the Zygomaticus major, responsible for smiling or positive emotional response. Negative emotions were similarly identified through a frowning gesture indicated by eyebrow contractions. The researchers concluded that while facial EMG provides benefits as a form of measurement, there are extenuating complications with recording. Though it does effectively measure the emotional valence of a participant, there are doubts in the confidence of reliability and validity of the data. Lajante et al. addressed the importance of abiding strictly by the technological and methodological guidelines if considering this new and relatively unexplored area of research. Ultimately this study represents baby steps in exploring an exciting new avenue of research. Facial EMG has the potential of being a more emotionally sensitive approach when further researching and understanding people.

Wireless │ Children’s Behavioral Inhibition

Shy child hiding behind parent because of behavioral inhibition
Behavioral inhibition (BI) has proven to be a fundamental risk factor in childhood anxiety psychopathology, arguably the most crucial factor in the development of anxiety. BI is defined as the increased arousal in response to novel stimuli, shyness, and withdrawal even in high-reward situations. The strength of this association varies based on respiratory sinus arrhythmia (RSA) regulation, yet little is known about this function in children with anxiety disorders.

RSA is characterized as the rhythmic fluctuations in heart rate associated with the respiratory cycle regulated by the parasympathetic nervous system. In a “basal,” or low-threat situation, RSA slows down the heart to maintain baseline levels. In a “challenge,” or high-threat situation, RSA is suppressed, which results in an increased heart rate and a fight-or-flight response. Thus, a greater control of the parasympathetic nervous system corresponds with high basal RSA (slowed heart rate) and increased adaptability and composure during threatening situations.

In “Children's behavioral inhibition and anxiety disorder symptom severity: The role of individual differences in respiratory sinus arrhythmia ,” an original research article in tech science journal , Behaviour Research and Therapy, Viana, Andres G., et al. explored the ability of RSA to moderate the association between BI and anxiety disorder symptom severity. They investigated RSA response during both a basal situation and challenge situation in the context of clinical anxiety. Participants consisted of forty-four children between the ages of 8 and 12, and their mothers. The first session involved self-report questionnaires and clinical interviews, and the second session involved an experiment with the children in a challenge situation. Using a BIOPAC MP system, the researchers gathered electrocardiogram (ECG) data with a wireless BioNomadix ECG transmitter and receiver. They also measured changes in the subjects’ thoracic circumference with the wireless BioNomadix respiration transducer, and recorded online through AcqKnowledge.

The data collected were analyzed to find RSA mean scores and revealed a positive association between BI and anxiety disorder symptom severity. Children with high levels of BI and low RSA responses to basal and challenge situations were found to have the highest levels of anxiety disorder symptoms. In addition, among children with high RSA responses to basal and challenge situations, the association with BI was non-significant. These findings support the supposition that higher levels of RSA, and ability to control the parasympathetic nervous system, may function to weaken the relationship between BI and anxiety. Thus, higher RSA may be related to an increased ability to regulate psycho-physiological responses and emotion, and act as a buffer against psychopathology.

Wireless │ Neural Effects of Verbal & Nonverbal Communication

Person demonstrating nonverbal communication.
In a first-ever study to examine adult-infant neural coupling and characterize its causal architecture, mutual direct gaze was seen to increase adult-infant neural coupling during social communication. Learning requires an individual’s full attention to retain the information being passed along. Attention sharing between people, through verbal spoken communication and nonverbal cues like eye gaze, is known to increase learning as it strengthens the attention amongst the individuals. Nonverbal cues are especially important in infant learning as they rely on them to learn meaning and intention. Little is known, however, about the cognitive processes behind this increased attention and predicting communication success. Victoria Leong, Elizabeth Byrne, Kaili Clackson, Sarah Lam and Sam Wass sought to understand whether gaze during spoken communication influences neural coupling, which would indicate communication success amongst adult and infant pairings. The experiment enlisted twenty-nine infants–fifteen males, and fourteen female–all around eight (8) months old, who interacted with one female adult experimenter. The adult experimenter addressed each infant one at a time and sang nursery rhymes that were familiar (sung at home by parents). The experimenter sang the nursery rhymes in two gaze conditions to each infant, either direct (gaze at infant) or indirect (gaze to the side of infant). EEG was recorded during the nursery rhyme procedure using BioNomadix wireless EEG amplifiers, connected to a MP160 research system. Teh wireless EEG setup was chosen to increase infant comfort and reduce distraction. The results confirmed the experimenters’ hypothesis as directional connectivity between adults and infants was higher during the directional gaze periods compared to the indirect gaze periods. Leong, et al also found that infants influenced adults more, rather than the other way around, over Alpha and Beta neural bands. This study provides a base for which other research can further investigate neural coupling’s effects in learning and other parts of social behavior beyond communication between infants and adults.

Wearable | Stress Detection Using Wearable Physiological & Sociometirc Sensors

Man that is stressed out.
Stress has negative effects on the health of the body and the health of economies. When a person is feeling stress, the body releases certain chemicals that lower the immune system, increasing the likelihood that illnesses will form in the body. Stress can also cause negative effects in the workplace, as when workers take time off and seek treatment, the companies they work for lose money as well. The Mental Health Foundation estimates that around 12 million adults living in the United Kingdom visit their General Practitioner every year with concerns of their mental health that have been brought on by stress. Due to these illnesses, an estimated 13.3 million work days are lost every year. The World Health Organization estimates that around 8.4 million GBP (10.5 million USD) are lost by UK businesses due to these health concerns. Moreover, the average wait time to get treatment is 3-6 months. Because of these factors, over the last decade studies performed on stress and mental health have increased in popularity. Researchers, Mozos, Oscar Martinez, et al. aimed to detect stressful behaviors by having their participants wear noninvasive physiological monitoring systems to find what activities elicited stress. These experiments were performed in a laboratory setting, using the TSST (Tier Social Stress Test) to manage levels of anxiety in each participant in a controlled situation; this popular method was used in over 4,000 settings over the last decade. The total sample size the researchers used was 18, male and female volunteers from the School of Psychology at the University of Lincoln in the UK. The social task presented was for the subject to prepare a presentation for a mock job interview, and tasked to speak continuously for five minutes. When subjects paused the first time, the experimenter would tell them their remaining time and ask them to continue. The second time the participant paused they would be asked a set of predefined interview questions. For the cognition task, the experimenter asked the participant to count down from 1022 in sets of 13, for five minutes. If the participant made a mistake, they were asked to start from 1022 again. Using the wearable, dual-signal BioNomadix, researchers wirelessly recorded electrodermal activity (EDA) and pulse plethysmograms (PPG), then analyzed the data to gather the Heart Rate Variability (HRV) between different tasks the subjects were doing, and extrapolate the stress the subjects were feeling in those conditions. The goal of the researchers was to show that using wearable monitoring systems can help detect stress, and with variations, can be applied outside of the lab, and into everyday interactions to get a firmer grip on what is causing anxiety and stress in millions of people.

Wireless | Cardiovascular Risk Factors in Children

Depiction of cardiovascular risk factors tested with BIOPAC’s dual-channel BioNomadix wireless ECG and Respiration transmitter
Cardiovascular risk factors (obesity, metabolism, hypertension, etc.) can significantly impact a person’s lifespan. While obesity rates are currently stagnant, they still remain very high. Cardiovascular risk factors have thus become the focus of health research to understand what behaviors might contribute to increased risk. The majority of these studies have been aimed specifically at adults, but little is understood about the origins of these risk factors in childhood. Laurie Wideman, et al thus sought to create a longitudinal study that investigated social and emotional development, called the RIGHT Track Health Study. The RIGHT track study followed participants from infancy to young adult to understand how their self-regulation and increased autonomy via their health behaviors might contribute to cardiovascular risks factors. Participants were measured at five ages: two, four, five, seven, and ten. Participants performed a variety of assessments including body composition, fitness tests, orthostatic challenge (while having heart rate variability recorded), 7-day accelerometry for physical activity and sleep, 24-hour dietary recalls, and blood analysis for various related biomarkers. Researchers also had participants complete extensive self-report measures related to diet, sleep, physical activity, and medical history. Heart rate variability (HRV) was measured using BIOPAC’s dual-channel BioNomadix wireless ECG and Respiration transmitter while participants performed the orthostatic challenge. Heart rate variability measured from the orthostatic challenge was compared to HRV collected during the early years of the study where the infants underwent psychological stressors. Through their RIGHT track health study, the researchers were able to provide valuable about the influence of childhood regulatory abilities on youth healthcare. The researchers hope that their findings will help illuminate potential critical “windows,” or specific points in childhood where people may be more at risk. Assessing when these windows occur could help greatly reduce certain risk factors and help our understanding of how to prevent chronic disease earlier in life.

Wearable | Flow State in VR Video Games

wearable data about physiological response to VR
One of the foundational concepts making virtual reality (VR) video games of high interest is the game’s ability to transport the user to a flow state. The visual and auditory stimuli presented are highly immersive, leading the user to focus entirely on the game, often losing track of time. Flow states are characterized by this lack of time awareness, as participants are able to match their abilities with the demands of the game (i.e., the game is not too easy or too hard). But what qualities reflect a flow state as it is happening in the moment? Researchers from Shandong University tested five first-level physiological functions to determine their efficacy in reflecting a flow state, including EMG, EDA, EEG, respiratory rate, and cardiovascular activity. Thirty-six students participated in a VR game while having their physiological responses monitored. Prior to the experiment, the researchers placed BIOPAC’s wearable dual-signal BioNomadix transmitters with appropriate electrodes on the participants to wirelessly record Respiration and ECG data. Participants were then seated in the designated gaming chair for five minutes to record baseline responses. After this, they played the game for six minutes, followed by a questionnaire about flow experience. The results showed that the five physiological functions, as a whole, indicated flow state, though respiratory rate was most effective. The authors note that, as a physiologic arousal marker, respiratory rate best predicted flow state.

Having physiologic indicators of a flow state not only assists future research, but also provides a method for real-time feedback on the efficacy of the game. The authors note that with better biometric data comes the opportunity to provide a better gaming experience, with real-time adjustments. If the physiologic responses and adjustments could be integrated with the gaming software, games would be far more realistic.

Wireless | Emotional Regulation

Wouldn’t it be nice to be able to regulate your emotional reactions? Birk and Bonanno (2016) studied the adaptiveness of modifying emotional regulation (ER) strategies based on affective and physiological feedback. They wanted to understand how people use emotional regulation to adjust from thinking about emotional situation to more neutral information (distraction). To develop a more coherent comprehensive understanding, researchers studied whether people use internal feedback (negative intensity, corrugator’s activity, heart rate) to guide emotional regulation. Birk and Bonanno performed two studies: Study 1 examined switching from reappraisal to distraction and Study 2 examined switching from distraction to reappraisal. The studies explored whether internal feedback influenced people to shift to an optimal strategy (distraction), instead of a nonoptimal (reappraisal) strategy, when regulating strong emotional reactions. In addition, both researchers tested whether the frequency of switching and response to internal feedback (RIF) predicted well-being. The researchers found that negative intensity, corrugator’s activity, and the magnitude of heart rate deceleration were higher on switching rather than maintained strategies. In Study 1, researchers found that a greater switching frequency showed higher rates of higher and lower life satisfaction. Birk and Bonanno were able to record and analyze data using a BIOPAC Research System with wireless BioNomadix and AcqKnowledge software. Facial electromyography, electrocardiography, and electrodermal activity were the physiological signals measured. Wireless BioNomadix data recording allows researchers to assess ambulatory subjects in an environment most appropriate for their study. BioNomadix amplifiers are capable of interfacing with MP Systems and AcqKnowledge software for a complete, wireless solution that supports advanced analysis for multiple applications. In conclusion, Birk and Bonanno collectively found that internal feedback about the experience of intense negative emotion guides the decision to switch form reappraisal to distraction in Study 1, but not the reverse order of strategies in Study 2.

Evaluation of an mHealth Application for Stress Management | Wireless BIOPAC

Cognitive behavioral therapy (CBT) is a common treatment for people who suffer mental health disorders, such as depression and post-traumatic stress disorder. The goal of this treatment is to help reduce many of the symptoms surrounding the patients’ difficulties, including stress, anxiety, and anger. One issue with cognitive behavioral therapy is the subjective nature of the treatment, which often results in high patient dropout rates. Researchers Winslow, et al., proposed an increase in objective, wearable data used during the therapy process in order to lower participant dropout rates. By recording real-time, mobile health data during and after the scheduled sessions, both patient and clinician can monitor mental health symptoms as they occur.

Testing

To test this, the researchers recruited 24 male participants who qualified for the study by completing several response-based tests measuring the psychiatric symptoms that characterize mental health disorders. Participants then began an 8-10 week CBT program that included a 60-minute session once a week, a personal log of daily activities, the use of a mobile phone app to indicate stress and set daily reminders, and recorded PPG and EDA data. BIOPAC wireless BioNomadix devices were used to record PPG and EDA data by fitting the devices to participants’ fingers.

Despite nine total participants dropping out of the study, researchers determined the amount of therapy sessions completed before drop out by the experimental group was significantly greater than the control group. A similar trend was found in the quantitative physiological data. Stress and other psychiatric factors, measured by heart rate and EDA data, were significantly reduced in the experimental group. Presented with this data, it is realistic to see tangible results in mental health by using mobile health applications and data recording to improve the success of cognitive behavioral therapy. The authors also noted other applications for mobile health data methods. Real-time physiologic data could help military or medical training instructors monitor their trainees’ response to live stimulus sessions. The impact of this improvement may result in tailored lesson plans that increase appropriate resilience training programs before cognitive behavioral therapy is needed.



Wireless | Psychological Stress Across Training Backgrounds

The negative effects of stress on the body have been widely studied. Stress can be defined as a situation that is causing the current state, or homeostasis, under pressure to change. The human body’s nervous system reacts to stress by changing the amount produced of certain biomarkers. For example, when heart rate elevates, blood pressure rises and the human body reacts and secretes hormones (epinephrine, cortisol, etc.). Experimenters tested the change in the production of specific biomarkers of people with different training backgrounds to understand how acute psychological stress affects their physiological responses. The three group classifications were sedentary subjects, endurance athletes, and strength athletes.
 
EDA (skin conductance), ECG (EKG), and breathing frequency were measured continuously; BP and cortisol were measured after each experiment segment. EDA, ECG, and breathing frequency were measured during the acute psychological stress test using the BIOPAC MP150 data acquisition unit connected to wireless biopotential amplifiers and recorded on BIOPAC’s AcqKnowledge software.

Psychological stress was induced in participants using a Stroop color-word test and math problems. These problems were presented in a slide show where the subjects had a limited amount of time to solve for the correct answers. The researchers found numerous differences in changes in the biomarkers measured in response to the acute psychological stress activities between the three groups. On average, athletes’ cortisol levels changed differently when compared to the sedentary group. Also, skin conductance was shown to have higher levels in the sedentary group than in the athletes. The athletes also had a higher recovery level for systolic blood pressure, which was observed to decrease over the test for the sedentary group.
 
The participants reported to have experienced psychological stress over the course of the activities and this was reinforced by the change in values of the biomarkers measured. This experiment showed that people with different training backgrounds had different responses to psychological stress for related biomarkers. The experimenters concluded that people with different training backgrounds react differently in their changes of certain biomarkers to psychological stress.

Wearable | Cardiovascular Risk Factors in Children

Very little is known about the origins of cardiovascular risk factors like obesity and altered glucose metabolism and their development during childhood. Adolescence is a time when individuals develop their own health behaviors while gaining increasing autonomy from their parents and this development has an effect on their cardiovascular health later in life. The RIGHT Track Health Study is a longitudinal study that followed participants from age two through young adulthood in an effort to understand how self-regulatory behavior throughout childhood alters the trajectory of various cardiovascular risk factors during late adolescence via health behaviors. For this study, individuals in the RIGHT Track program were re-contacted and invited to participate in adolescent data collection in an effort to gain insight into the origins of behavior that could contribute to an increase in cardiovascular risk factors later in life. This information could be valuable to helping researchers and public health policy administrators target intervention efforts in early childhood, when preventing chronic diseases is most cost-effective and behavior is more malleable.

The researchers used an orthostatic challenge to assess autonomic function, via changes in participant’s heart rate variability (HRV), to a mild physiological stressor. This physical stressor was used as a way of comparing the autonomic function to the physiological stressor paradigms that participants underwent during their early developmental years as part of the RIGHT Track program. HRV measurements provided complementary information regarding the role of autonomic nervous system as a regulator of cardiac control. ECG and respiration recorded using a BioNomadix wireless amplifier set with wearable transmitter to collect HRV at rest. Physiological signals were sent to a BIOPAC MP150 Research System with AcqKnowledge software for collecting and exporting the data in real time.

Data from the RIGHT Track Health Study will provide valuable information for youth healthcare about how health behaviors developed during an individual’s adolescence—such as diet, physical activity, sleep and substance abuse—can later affect cardiovascular health and potentially indicate critical times for reducing certain cardiovascular risk factors by assessing their trajectories.

Wireless | Fear of Flying


Psychophysiological Monitoring of Fear Extinction



An estimated 10% of the general population experiences fear of flying (FOF) and 25% of the population that flies experiences distress during the flight. The most effective psychological technique for the treatment of phobias is in vivo exposure. Using planes in real flights, however, takes a large amount of time and money that is not easily accessible. Virtual Reality Exposure Treatment (VRET) of FOF is now well established but generalization of such treatment in clinical settings is still rare.
Researchers from INSERM Centre of Psychiatry and Neurosciences presented a case report of a 31-year-old woman who was chosen for treatment because of her FOF. She attended a demonstration of the new VR equipment and disclosed her FOF. Researcher’s proposed a VRET as she had to fly in a few months and anticipated high anxiety during the scheduled flight. The woman received six sessions of VRET, delivered with standard BIOPAC VR setup, using the included Virtual Environment (VE) of an aircraft with minor adaptations. The woman was seated in an aircraft chair that vibrated during takeoff and turbulences. Researchers used a standard BIOPAC VR Ultimate system, a high-resolution stereoscopic head-mounted display providing a monocular field of view of 60°, a tracking device in order to adapt the field of view to head movements, connected to a MP150 physiological responses amplifier. Skin Conductance Level and Heart Rate were recorded with BIOPAC’s BioNomadix wireless transmitter-receiver modules connected to electrodes. Results showed evidence of a progressive reduction of the subject’s anxiety in the reactivity to takeoffs and turbulences. A Flight Anxiety Situations questionnaire showed a reduction of anticipation anxiety. The woman succeeded in flying alone three months after completion of VRET. Physiological monitoring may provide indexes predictive of outcome; further research is required. Full immersion rather than the graphical quality of VE is the main driver of the sense of reality experiences by the subject.

Wireless | Flow State

A flow state typically occurs when a person’s abilities match the level of difficulty for the current task they are completing. During this state, researchers have found that most people who exhibit flow experience changes in blood pressure, muscle activation, and mental focus, among other responses. They also lose self-awareness and subjectively evaluate time as passing more quickly than usual. All of these factors relate to both the sympathetic and parasympathetic nervous systems, suggesting that flow may involve a non-reciprocal coactivation of both systems. Neuroscience and Psychology researchers in Stockholm, Sweden hypothesize that these effects suggest a potential physiological component that differentiates flow from other states of increased mental effort. This indication may provide accurate measurement of deep concentration in a flow state during various activities, including, but not limited to, music, video games, and writing. To test this hypothesis, the researchers had a total of 77 participants play a modified version of the video game Tetris and then complete a questionnaire about their experience. Participants were instructed to play three game difficulties: Easy, Optimal, and Difficult. In the Optimal setting, researchers adjusted the speed of the game to match the participants’ ability, based on initial performance. Speed was then decreased and increased by three stages for Easy and Difficult modes, respectively. Wireless ECG and Respiration data was recorded using the wearable BioNomadix amplifier (BN-RSPEC); surface electrodes were placed on the left and right chest. In addition, mental activity was measured in 35 participants—this was determined by frontal lobe oxygenation, which was recorded by placing the BIOPAC fNIR100 optical brain imaging sensor on the forehead of each participant. After completing all three video game difficulties, subjects were given a questionnaire to indicate their subjective experience with each game level. The results found that while larger respiratory depth was associated with deeper flow, there was no significant correlation between frontal cortex activity and flow.



Wireless | Influence of Gender on Muscle Activity



Muscle mechanical energy expenditure shows the neuromotor strategies used by the nervous system to analyze human locomotion tasks and is directly related to its efficiency. Kaur, Shilpi, Bhatia, and Joshi investigated the impact of gender on the activity of agonist-antagonist muscles during maximum knee and ankle contraction in males and females. Twenty right leg dominant male and female adult volunteers were recruited in the study. Limb dominance was determined according to which leg the individual chooses and relies on to carry out the activities. Movements of knee and ankle used for the maximum contractions were knee flexion and extension, and ankle plantar flexion and dorsiflexion. EMG Signals were recorded wirelessly from the selected ipsilateral and contralateral muscles of both the dominant and non-dominant lower limbs of all subjects. Recordings used BIOPAC multi-channel Wireless EMG and the collected data was stored using AcqKnowledge software included with the data recording system. Results showed that there is no significant influence of gender on agonist-antagonist muscle energy expenditure during maximum knee contraction. For ankle contractions, gender has significant influence on energy expenditure during maximum ankle dorsiflexion. Researchers found that these results are helpful in understanding gender related differences in the energy expenditure of selected muscles during maximum knee and ankle contractions. The wireless BioNomadix modules used by the researchers permitted free movement for the knee and ankle movements required of the study. The Dynamometry-EMG BioNomadix Pair has matched transmitter and receiver module specifically designed to measure one or both signals. These units interface with the MP150 and data acquisition and AcqKnowledge software, allowing advanced analysis for multiple applications and supporting acquisition of a broad range of signals and measurements. Both channels have extremely high-resolution EMG and Dynamometry waveforms at the receiver’s output. The pair emulates a “wired” connection from the computer to subject, in terms of quality, but with all the benefits of a fully-wireless recording system.

Wireless | Emotion Processing in Schizophrenia

Schizophrenia has long been known to be a very complicated and poorly understood cognitive disorder. To attempt to understand the differences in emotional processing in schizophrenic patients, psychologists use physiological parameters to quantify psychological activity. Researchers Peterman et al. performed a study in which Galvanic Skin Response (GSR or EDA) and Facial Electromyography (fEMG) were recorded in schizophrenic and control subjects in response to social stimuli to assess the differences in adaptive emotional response. To measure these signals, they used wireless BIOPAC BioNomadix amplifiers, one for GSR (BN-PPGED) and two for fEMG (BN-EMG2). The participants were asked to view a block of images of the same category (e.g., social positive, non-social negative, etc.), then select a positivity response (valence rating) as to how they felt about the images. Subjects viewed several blocks of images to evoke differing responses. The self-reported valence ratings were paired to physiological data acquired with wireless BioNomadix transmitters. The GSR and fEMG were collected with an MP150 data acquisition system, and the data was analyzed with AcqKnowledge software. Researchers found that the Schizophrenic subjects responded similarly to the controls in the valence ratings, but their GSR and fEMG data diverged significantly. The Schizophrenic subjects showed a stronger overall GSR response to the images; however they did not show an effect by the sociality of the pictures. The fEMG response was also greater overall in the Schizophrenic group, but also did not vary by sociality. The results provide physiological background to the disrupted self-awareness of emotion processing in Schizophrenics. The complexity of emotion processing in cognitive disorders continues to elude us and to pave new avenues for scientific study. Along with the BioNomadix modules used in the study, BIOPAC Systems offers several wireless, wearable physiological data acquisition and analysis systems for psychophysiological research.




Wireless, Wearable | Quality of Life Technologies

There is a major concern growing in the medical community that the ratio of health workers to population size is decreasing. This means that the number of available doctors and medical professionals is starting to become too small to handle the number of people needing medical help. Technologies are therefore being created to help bridge the gap that is being created. These “Quality of Life Technologies” (QoLTs) have been developed to help monitor the health of people. While these technologies have been able to provide physiological support to individuals, the same could not be said for mental symptoms. If QoLTs could move into the realm of psychology and self-therapy, they could help improve the mood and quality of life for patients. A group of researchers from the Polytechnic University of Bucharest and the University of Lincoln recently published a paper that presents a machine learning approach for stress detection using wearable physiological amplifiers. To induce stress in participants, the researchers had them perform both a public speaking and cognitive task, which according to previous research these tasks caused the highest increase in measurable signals.

For their experimental setup, they used a BIOPAC BioNomadix BN-PPGED wireless transducer, hooked up to an MP150 data acquisition system, to record both EDA and PPG signals. They then used AcqKnowledge 4 software to extract both the PPG autocorrelation signal and Heart Rate Variability (HRV). Their results provided accurate stress detection in individuals. Their analysis marks a good starting point toward real-time mood detection, which could lead to people improving their quality of life. One way they could improve their experimental setup however, would be to use the BioNomadix Logger. This device allows for up to 24 hours of high quality data logging allowing the researchers to analyze a subject’s data from when they encountered stressful situations outside the lab.


- Copyright © Life Science Hardware and Software -Metrominimalist- Powered by Blogger - Designed by Johanes Djogan -